
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Analyzing Computational Complexity of Popular

Cryptographic Algorithms to Determine the Most

Efficient Cryptosystem

M. Rayhan Farrukh - 13523035

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1rayhan.farrukh@gmail.com, 13523035@std.stei.itb.ac.id

Abstract— In the digital age, where nearly every interaction is

conducted online, ensuring security of data transmitted through

the internet is important. Cryptography serves as a critical tool for

such tasks However, while security is essential, efficiency is equally

important, to ensure scalability and usability of cryptographic

algorithms. This paper evaluates the efficiency of three widely-used

cryptographic algorithms: RSA, ECC, and AES, through both

theoretical complexity analysis and empirical runtime testing. The

results demonstrate that AES is the fastest for encryption and

decryption, ECC provides a balance between efficiency and

security, and RSA is the slowest but remains valuable for secure

key exchange. These findings emphasize the importance of

balancing performance and security when selecting cryptographic

algorithms for specific applications.

Keywords— AES, ECC, RSA, time complexity

I. INTRODUCTION

In the modern age, where close to every interaction is

digitalized, many information are shared around through

networks between people who are countries, even continents

apart. This poses a serious security risk, as a competent hacker

can intercept these interactions to extract sensitive informations.

For this reason there needs to be some protocols and systems to

ensure security of online transactions. One such tool is

cryptography.

Cryptograpy plays a critical role in ensuring data security, it

is used everywhere, spanning various industries and platforms.

Companies like Google and Amazon use protocols such as TLS

and SSL to protect data and secure online transactions.

Moreover, cryptography is implemented for messaging apps like

Whatsapp, for their end-to-end encryption, and even blockchain

technologies, like Bitcoin, to ensure privacy and data integrity.

For this reason, it is imperative to construct robust

cryptosystems that are immune to cyberattacks.

However, while security is critical, the efficiency of such

cryptosystems is also an important variable to consider. As the

volume of data grows, the computational cost of cryptographic

processes must be optimized to ensure usability and scalability,

making analysis of computational complexity a critical aspect of

evaluating cryptosystems implementation.

This paper will focus on the analysis for time complexity of

three widely used cryptographic algorithms: RSA, ECC, and

AES. By analyzing their encryption and decryption process, this

paper’s study aims to provide a deeper understanding of their

efficiency and suitability for various security applications.

II. THEORETICAL FOUNDATION

A. Computational Complexity

Computational Complexity, or often referred to as

Algorithmic Complexity, is a branch of theoretical computer

science that focuses on the calculations of resources to solve a

problem, such as the time or space (memory) required to solve

a problem. It categorizes algorithms based on their growth rates

as input sizes increase in order to analyze their efficiency and

aptitude for the problems specified.

Key concepts in computational complexity include:

1. Growth of T(n)

The function T(n) represents the precise growth of

resources required by an algorithm as the input size n

increases. For example, the T(n) of both comparisons and

swaps combined for the worst case of bubble sort is as

such:

𝑇(𝑛) = 𝑛(𝑛 − 1) = 𝑛2 − 𝑛 (1)

For time complexity, T(n) is used to quantify the number

of basic operations performed in the algorithm, whereas

for space complexity, it quantifies the amount of memory

used by the algorithm.

2. Asymptotic Notations

Asymptotic notations represents the behaviour in

complexity of algorithms as the input size n grows very

large. They drop the specificity of the T(n), focusing on

the dominant growing factor by taking the highest order

terms and removing constanst and lower order terms. For

example, the asymptotic notation for the worst case of

bubble sort algorithm is O(n2).

Asymptotic notations are divided into three:

a. Big-O (𝑂(𝑛)): Upper Bound, represents the worst

case growth rate of an algorithm.

b. Big-Omega (Ω(𝑛)): Lower Bound, describes the

best-case growth rate.

mailto:1rayhan.farrukh@gmail.com
mailto:13523035@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

c. Big-Theta (𝜃(𝑛)): Tight Bound, used when Big-O =

Big-Omega, providing an exact (tight-bound)

growth rate for the algorithm

Asymptotic notations are used in place of T(n) to focus

only on the scalability of the algorithm, ignoring

implementation-specific details.

In cryptography, computational complexity is critical for

identifying trade-offs between security and efficiency, by

analyzing the resources that a specific cryptographic algorithm

requires as opposed to their strength. Computational complexity

is also important in calculating a cryptographic algorithm’s

resistance to brute-force attacks or cryptanalytic methods.

B. Cryptography and Cryptosystems

Cryptography is the practice of hiding or obscuring

information or data in order to secure it from being read by

unauthorized parties. The process of obscuring information into

unreadable form is called encryption, whereas the process for

retrieving information back from the encrypted form is called

decryption. An example of a basic cryptographic technique is

shifting letters by a certain amount to deform the text (e.g.

Caesar Cipher). More advanced techniques rely on

mathematical foundations to ensure security. For instance, RSA

(Rivest-Shamir-Adleman) uses modular arithmetic and prime

factorization, and ECC (Elliptic Curve Cryptography) leverages

properties of elliptic curves to secure informations.

Figure 1. Example of Caesar Cipher with the text “Hello

World” shifted by one letter

Source: https://www.researchgate.net/profile/Plaintext-and-

the-Corresponding-Ciphertext-using-Caesar-Cipher-with-Key-

1.jpg

In practice, cryptography requires a cryptosystem to ensure its

effectiveness in securing data. A cryptosystem is a framework

that combines cryptographic algorithms and protocols required

to implement a secure data encryption and decryption. It

tipically consists of the following components:

1. Key Generation, produces the key used in encryption and

decryption

2. Encryption, converts plaintext into a ciphertext using a

key

3. Decryption, converts ciphertext back into the plaintext

Cryptosystems are classified into two main types based on

how encryption and decryption keys are used: symmetric and

asymmetric.

1. Symmetric

Symmetric cryptosystems uses a single key for both

encryption and decryption, making them efficient.

However, the key has to be shared between the intended

parties which requires a secure method for exchanging,

this can be a challenge in large networks.

2. Asymmetric

Asymmetric cryptosystems use different keys for the

encryption and decryption. The key for encryption is

called the public key, as it is not required to keep this key

a secret, while the key for decryption is called the private

key.

Figure 2. Illustration of a cryptosystem

Source: https://cdn.educba.com/academy/wp-

content/uploads/2019/08/What-is-Cryptosystems-1.jpg

C. Rivest-Shamir-Adleman (RSA)

RSA is an asymmetric cryptosytem inroduced in 1977 by Ron

Rivest, Adi Shamir and Len Adleman. RSA is the most widely

used public-key cryptosystem by virtue of its simplicity and

reliability to provide both data encryption and digital signatures.

RSA relies on modular arithmetic and number theory. It is based

on the computational difficulty of factoring a product of two

large primes p and q, which provides security for its encryption

method. The process in RSA include:

1. Key Generation

Generating the key starts with selecting two large

prime numbers p and q, which will be kept private. These

primes are multiplied to compute the modulus n:

𝑛 = 𝑝 × 𝑞 (2)

where n is a part of the public-key, which means it does

not have to be kept secret. After calculating n, the

totient ϕ(n) is then calculated as:

𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1) (3)

Next, a public exponent e is chosen such that 1 < 𝑒 <

𝜙(𝑛) and gcd(𝑒, 𝜙(𝑛)) = 1, to ensure that e is coprime

with the totient. Finally the private-key, or private

exponent d is computed as the modular multiplicative

inverse of e modulo ϕ(n), as such:

𝑑 = 𝑒−1 mod 𝜙(𝑛) (4)

https://www.researchgate.net/profile/Olanrewaju-Babatunde/publication/384482269/figure/fig2/AS:11431281281150092@1727770465708/Plaintext-and-the-Corresponding-Ciphertext-using-Caesar-Cipher-with-Key-1.jpg
https://www.researchgate.net/profile/Olanrewaju-Babatunde/publication/384482269/figure/fig2/AS:11431281281150092@1727770465708/Plaintext-and-the-Corresponding-Ciphertext-using-Caesar-Cipher-with-Key-1.jpg
https://www.researchgate.net/profile/Olanrewaju-Babatunde/publication/384482269/figure/fig2/AS:11431281281150092@1727770465708/Plaintext-and-the-Corresponding-Ciphertext-using-Caesar-Cipher-with-Key-1.jpg
https://cdn.educba.com/academy/wp-content/uploads/2019/08/What-is-Cryptosystems-1.jpg
https://cdn.educba.com/academy/wp-content/uploads/2019/08/What-is-Cryptosystems-1.jpg

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

This private-key d is kept secret, and will be used for

the decryption process.

2. Encryption

To encrypt a plaintext P, it must first be converted

into numerical form that satisfies 0 ≤ 𝑃 ≤ 𝑛. This is

done by using an encoding scheme, such as ASCII or

UTF-8. Once converted into numbers, the sender uses

the public key to compute the ciphertext C:

𝐶 = 𝑀𝑒 mod 𝑛 (5)

Notice that in the equation, no private keys are used, so

anyone can encrypt a message to result in the same

ciphertext as the original P. This means this process can

be brute-forced, but it will be ridiculously expensive.

3. Decryption

To obtain the plaintext P from the received C, the

recipient will use the private key d along with public

key n as such:

𝑃 = 𝐶𝑑 mod 𝑛 (6)

The properties of modular arithmetic ensure that it is

infeasible for anyone without d (and thus without

knowledge of p and q) to decrypt the ciphertext.

D. Elliptic Curves Cryptography (ECC)

Elliptic Curves Cryptography is a modern public key

cryptosystem that leverages the mathematical properties of

elliptic curves, defined over finite fields. These properties

provides efficient operations, smaller key sizes, and strong

security based on the computational infeasibility of the Elliptic

Curve Discrete Logarithm Problem (ECDLP)[7].

ECC is based on the equation of an elliptic curve, typically

written as:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑝 (7)

where a and b are constants, an p is a prime number defining the

finite field. For the curve to be usable in ECC, it needs to be non-

singular so that group law applies to it. A curve is non-singular

if it satisfies the folowing equation:

4𝑎3 + 27𝑏2 ≠ 0 mod 𝑝 (8)

As mentioned previously, the security of ECC comes from

ECDLP, which is computationally difficult to solve. This

problem involves finding k such that:

𝑄 = 𝑘𝑃 (9)

where Q and P are points on the curve, and k is a scalar

multiplier.

Figure 3. An elliptic curve, typically used for ECC

Source: https://cf-

assets.www.cloudflare.com/zkvhlag9/image00.png

The cryptographic process in ECC involves:

1. Key Generation

Key generation in ECC is done by selecting a base

point G called the generator, and a randomly chosen

private key d, such that 1 ≤ 𝑑 < 𝑛, where n is the order

of the curve. The public key of ECC is calculated

according to (9), with the generator as P and the private

key as k, and the resulting public key Q is a point along

the curve.

2. Encryption

To encrypt a message, the sender first converts the

plaintext into a point P on the curve. The ciphertext is

divided into two points, obtained using the following

equations:

𝐶1 = 𝑘𝐺, 𝐶2 = 𝑀 + 𝑘𝑄

(10)

Where k is a random integer chosen for the encryption

process. The value of k will not be needed in the

decryption process, although ensuring that k is truly

random will make the ciphertext more secure.

3. Decryption

In order to decryp the ciphertext, the recipient uses

their private key d to get the plaintext M, according to

(10) with the following process.

Since 𝑄 = 𝑑𝐺, and 𝐶1 = 𝑘𝐺, then we can write:

𝑘𝑄 = 𝑘𝑑𝐺 = 𝑑(𝑘𝐺)

𝑘𝑄 = 𝑑𝐶1

after acquiring 𝑘𝑄 we can then subtract it from C2 to

obtain the plaintext M:

𝐶2 = 𝑀 + 𝑘𝑄

𝑀 = 𝐶2 − 𝑘𝑄

 𝑀 = 𝐶2 − 𝑑𝐶1 (11)

The most basic application of ECC is the Elliptic Curve

Diffie-Helman (ECDH). It is a protocol for establishing a shared

secret over an insecure channel. Each party generates a private

key, then derive the public key using scalar multiplication on the

elliptic curve. The shared secret will then be derived after the

public keys are exchanged. This secret is used in obtaining the

encryption key.

https://cf-assets.www.cloudflare.com/zkvhlag99gkb/7C9LODC0OpfZlr9E8kqrSP/4248aa3bd2bf09e9f2c5eb7073c8ccfe/image00.png
https://cf-assets.www.cloudflare.com/zkvhlag99gkb/7C9LODC0OpfZlr9E8kqrSP/4248aa3bd2bf09e9f2c5eb7073c8ccfe/image00.png

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

E. Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES), also known as

Rijndael, is a symmetric cryptoraphic algorithm adopted as a

federal standard by the U.S. National Institute of Standards and

Technology (NIST) in 2001 due to its efficiency and security.

AES operates on data blocks of fixed size (128 bits) and

supports key sizes of 128, 192, and 256 bits. AES uses 4x4

matrices of bytes, called the state, as representation for the data

blocks. If the data block is larger than 128 bit, the data will be

separated into different 4x4 matrices, where each cells of these

matrices contains 1 byte of data. AES performs a Substitution-

Permutation Network (SPN)[8] to transform plaintext into

ciphertext through a series of rounds. The number of rounds

depent on the size of the key:

• 10 rounds for 128-bit keys

• 12 rounds for 192-bit keys

• 14 rounds for 256-bit keys

Each round consists of the following processes:

1. SubBytes

Each byte in the block is substituted using a fixed 16x16

substitution lookup table containing non-linear

transformation of each possible byte value. This ensures

that non-linearity, creating resistance to linear and

differential cryptanalysis

2. ShiftRows

In this step, each row is shifted left by its row index

minus one. This operation creates diffusion by

rearranging the data within the matrix.

3. MixColumns

MixColumns aplies a linear transformation to each

column of the state matrix using matrix multiplication

over a finite field (256 bits). Each column is multiplied

by a fixed matrix:

Figure 4. Matrix used for MixColumns multiplication

Source: https://www.reddit.com/media?uFhow-exactly-

does-mix-columns-work-in-aes-png

The result is a new column with the input bytes mixed,

creating stronger interdependence. This step is not

included in the final round of enncryption to simplify the

decryption process

4. AddRoundKey

In this step, the state matrix is combined with a round key

using XOR. Each byte of the state is XORed with the

corresponding byte of the round key. The original key

used will be the initial key XORed directly with the

plaintext. This step is repeated in every round so that

every round has their own unique key for the encryption.

The process of generating unique key for each round is

called key expansion.

The above rounds processes are repeated according to the

encryption key size, to transform plaintext into cipher text in the

encryption process. For decryption, the steps are reversed using

their respective inverse functions to restore the original

plaintext.

III. METHODOLOGY

The cryptographic algorithms analyzed in this paper are RSA,

ECC and AES. The analysis is conducted through both

theoretical calculations and empirical testing to evaluate the

efficiency of each algorithms.

The theoretical calculations will focus on the core

mathematical operations underlying the algorithm. For RSA, the

focus will be on the time complexity of modular exponentiation,

as well as the computational difficulty of prime factorization.

For ECC, the analysis centers on scalar multiplication over

elliptic curves and its reliance on the difficulty of ECDLP. As

for AES, each key expansion process and the Substitution-

Permutation Network’s complexity are evaluated to assess

performance of the algorithm. Overall, the focus will be on the

key generation fo these algorithms as it is the most impactful

factor of performance.

Empirical testing is done by implementing these algorithms

in Python using the Pycryptodome, tinyec, and sympy libraries.

Python is chosen for its simplicity of implementing these

cryptographic algorithms, although with a trade-off in execution

speed. The tests will measure encryption and decryption times

for varying key sizes. Additionally, brute-force resistance is

simulated on small data and key sizes to estimate the effort

required to break each algorithm. All tests will be conducted on

a Lenovo Legion 5i Pro Gen 7, equipped with an Intel i7 12700H

processor and Nvidia GeForce RTX 3060 GPU.

IV. IMPLEMENTATION AND COMPLEXITY ANALYSIS

A. Generating Large Numbers

The first step in each algorithms used is to generate large

numbers that serves as the basis for the key generation. The size

of these numbers will correspond to the size of the key. In this

paper, the key sizes used is 128, 192, and 256 bit. The numbers

generated will not have the same characteristics for every

algorithms, as they each have different requirements, as RSA

and ECC require prime numbers. Consequently, RSA and ECC

relies on primality testing to ensure the numbers generated are

prime. A common approach for this is to use the Miller-Rabin

primality test. The Miller-Rabin primality test is a probabilistic

algorithm used to determine whether a number is likely a prime.

Figure 5. Implementation of modular exponentiation

Source: Author’s documentation

https://www.reddit.com/media?url=https%3A%2F%2Fpreview.redd.it%2Fhow-exactly-does-mix-columns-work-in-aes-v0-gyzsg4fh725b1.png%3Fwidth%3D1886%26format%3Dpng%26auto%3Dwebp%26s%3D21b048928ea7cd1f7d9a41f907597d963bf73fbb
https://www.reddit.com/media?url=https%3A%2F%2Fpreview.redd.it%2Fhow-exactly-does-mix-columns-work-in-aes-v0-gyzsg4fh725b1.png%3Fwidth%3D1886%26format%3Dpng%26auto%3Dwebp%26s%3D21b048928ea7cd1f7d9a41f907597d963bf73fbb

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 6. Implementation of Miller-Rabin primality test

Source: Author’s documentation

The implementation for Miller-Rabin test is as follows.

Where n is the candidate number being tested:

1) Decompose 𝑛 − 1 into 𝑑 ∗ 2𝑟 , where d is odd.

2) Randomly select a base a in the range [2, 𝑛 − 2].
3) Compute 𝑥 = 𝑎𝑑 mod 𝑛. If 𝑥 = 1 or 𝑥 = 𝑛 − 1, the

candidate passes this round.

4) If not, repeatedly square x (up to 𝑟 − 1 times) and check

if 𝑥 = 𝑛 − 1. If it still does not satisfy, then the candidate

is composite.

This implementation leverages modular exponentiation (step 3)

for efficient computation.

The complexity for this algorithm is dominated by modular

exponentiation, computed using repeated squaring. A single

modular exponentiation has complexity:

𝑂(𝑘2 log 𝑘) (12)

where k is the bit length of n.

The Miller-Rabin primality test is only required to obtain

primes for RSA and ECC. As for AES, the process is much more

straightforward, as it does not require prime numbers. Instead,

AES simply requires a random number within the desired bit

sizes. This eliminates primality testing, resulting in a time

complexity:

𝑂(𝑘)

B. RSA

In general, RSA can be divided into three important

processes, key generation, encryption, and decryption. Among

the three, RSA’s complexity is most dominantly influenced by

the key generation, where as encryption and decryption have

roughly the same complexity, with both of them relying on

modular exponentiation. Due to this fact, the efficiency of RSA

mostly depends on the bit size of the keys, not the data size. The

complexity. The implementation and complexity analysis for

RSA is like so:

1. Key Generation

Figure 7. Implementation of RSA key generation

Source: Author’s documentation

The key generation process starts with generating two

large prime numbers, each of the numbers will be
𝑘

2
 bits in

size where k is the size of the key. The process of randomly

generating these numbers has the complexity of 𝑂(𝑘). Each

generated number is a candidate for primality testing, which

according to (12) have the complexity of 𝑂(𝑘2 log 𝑘). If the

numbers generated is not a prime number then repeat

iteration of the primality test is required on multiple

candidates, this results in the complexity:

𝑂(𝑘 ∙ 𝑘2 log 𝑘) = 𝑂(𝑘3 log 𝑘)

Once p and q are generated, we calculate the public key n

and its totient 𝜙(𝑛), both of these only involve arithmetic

multiplication which has a complexity of 𝑂(𝑘 log 𝑘).

Afterwards we obtain the private key d using modular

inverse of e mod 𝜙(𝑛). The implementation uses Extended

Eucledian Algorithm for this which require 𝑂(𝑘) division

steps, with each step performing either a division or

multiplication of k-bit numbers. The complexity of modular

inverse calculation is 𝑂(𝑘2), assuming no logarithmic

overhead. Overall, the complexity of key generation is:

𝑂(𝑘3 + 𝑘2 + 𝑘3 log 𝑘) = 𝑂(𝑘3 log 𝑘) (13)

2. Encryption and Decryption

Figure 8. Implementation of RSA Encryption & Decryption

Source: Author’s documentation

Both encryption and decryption rely on modular

exponentiation applied to each character of the

plaintext/ciphertext. Modular exponentiation computes

𝑥𝑦mod 𝑛, where x is the character’s numeric value, y is the

key, n is the totient of the public key. The complexity of

modular exponentiation is (12), and for modular

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

exponentiation on a text of length m the complexity

becomes:

𝑂(𝑚 ∙ 𝑘2 log 𝑘) (14)

Encryption typically uses a small, fixed public exponent (e

= 65537), where as decyption uses a large private exponent

with k bits size. This causes a difference in performance, but

alas the asymptotic complexity remains the same.

In conclusion, the overall complexity of RSA is a

combination of key generation and encryption-decryption as

such:

𝑂(𝑛3 log 𝑛 + 𝑚 ∙ 𝑛2 log 𝑛) (15)

here, key generation will dominate for small messages (𝑚 ≪ 𝑛),

while encryption-decryption dominates for large messages. This

reflects the trade-offs between key size n and message length m.

C. ECC

Much like RSA, ECC consists of three processes, key

generation, encryption, and decryption. For these processes, the

computational complexity is most significantly affected by

scalar multiplication, which is the foundation of all ECC

operations. Scalar multiplication is utilizes in all three processes,

which makes the complexity distributed relatively evenly for all

three process. Implementation and complexity analysis for ECC

is as follows:

1. Operations

Elliptic curves operations will be done using an elliptic

curve object, as shown below in Fig. 9:

Figure 9. Implementation of Elliptic Curve object

Source: Author’s documentation

The elliptic curve used is NIST P-128, P-192, and P-256,

the values of the elements of these curves can is not shown

for the sake of brevity (refer to the appendix for the source

code). This curve is used as it is widely chosen for its

strong 128-bit security, excellent performance and it is

standardized in cryptographic protocols.

The operations for ECC include point addition and point

doubling, which will be used in the scalar multiplication

process. For the sake of brevity, only scalar multiplication’s

complexity will be detailed here. Fig 10. Shows the code

for scalar multiplication:

Figure 10. Implementation of scalar multiplication

Source: Author’s documentation

Scalar multiplication’s complexity is dominated by point

addition and point doubling. Both of these operations have

roughly the same complexity as they are mostly doing the

same operations with slight differences to account addition

of a point with itself in doubling. The point addition

process follows these steps:

1) Compute the slope (m), which uses subtractions,

modular inversion and modular multiplication.

2) Compute the new x coordinate, this uses

subtractions and modular squaring

3) Compute the new y coordinate, this step uses

subtractions and modular multiplication.

The steps are slightly different for point doubling, but the

complexity is more or less the same. In total, these steps

combine has the total complexity of:

𝑂(𝑘2 log 𝑘)

For scalar multiplcation, it uses the double-and-add

algorithm, which involves iterating the bits of k through

log2 𝑘 iterations, and since scalar multiplication is

dominated by point addition and doubling, the total

complexity becomes:

𝑂(log2𝑘 ∙ 𝑘2log2𝑘) = 𝑂(𝑘2log2𝑘) (16)

2. Key generation

The first step in key generation is to choose a point G on

the curve as a generator point, which in this case G is the

NIST standard point, different for each key sizes. The value

of these points can be seen within the source code (refer to

the appendix).

Figure 11. Implementation of key generation for ECC

Source: Author’s documentation

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

There are two keys generated, the private key, and the

public key. The private key is chosen from the range [1, 𝑝 −
1], where p is the prime modulus of the curve. Usually

calculating p is done randomly generating it, and have it go

through primality testing, but since we are using the

predefined NIST standard curve, there is no need to generate

p. This makes the complexity for private key generation

significantly faster with the complexity of 𝑂(1).

This private key is then used to calculate the public key by

multiplying it with the generator point G. This step uses

scalar multiplication which has complexity of (16). So

overall, the computational complexity of key generation of

ECC is the same as that of scalar multiplication if the prime

p is predetermined. Otherwise, ECC key generation is

dominated by Miller-Rabin primality test which has the

complexity of (13).

3. Encryption and Decryption

Much like RSA, the encryption and decryption in ECC

have similar complexities with slight differences.

Figure 12. Implementation of ECC encryption and

decryption

Source: Author’s documentation

The steps for encryption are as follows:

1) Pick a random scalar k as ephemeral key

2) Compute 𝐶1 = 𝑘𝐺 using scalar multiplication

3) Compute kQ using scalar multiplication

4) Obtain C2 as the ciphertext by adding the x-coordinate

of kQ, this is done to every character in the plaintext

The complexity of this process is equal to the complexity

of scalar multiplication (16). As for decryption, we only need

to compute kQ using private key d and part of the ciphertext

C1, then we obtain the plaintext using (11). Encryption and

decryption has similar complexity, although encryption

takes slightly more time because scalar multiplication is

done twice, which makes it slightly more computationally

expensive than decryption.

Overall, the total complexity of ECC is dominated by scalar

multiplication, this reflects the process as each step in ECC

require scalar multiplication. The complexity of ECC is then:

𝑂(𝑛2log2𝑛) (17)

D. AES

AES works differently than the two previous algorithms

discussed. Unlike RSA and ECC, AES is a symmetric key

algorithm designed for high speed data encryption. The core

operations underlying AES is the Substitution-Permutation

Network (SPN), which contributes the most in complexity due

to its repetition during rounds calculation in both encryption and

decryption process. Also unlike RSA and ECC, AES’s key

generation, called key expansion, is done on every round of

AES. This process, along with other operations, is implemented

as detailed below.

1. Substitution-Permutation Network

The heart of AES, SPN, along with its inverses, takes up

most of the operations in data encryption and decryption,

which means time complexity of SPN determines time

complexity of AES.

Figure 13. Implementation of SPN

Source: Author’s documentation

Fig. 13 shows the implementation of normal SPN used in

encryption, it constitutes four operations, SubBytes,

ShiftRows, MixColumns, and RoundKey addition. For

decryption, the SPN used is the inverses of these operation,

which has the same time complexity, meaning encryption

and decryption has the same time complexity. For the sake

of brevity, the implementation for the inverses will not be

shown here, readers’ may refer to the appendix for further

exploration. The complexity for each of these operations is

described below, where n is the size of the state matrix

1) SubBytes, matrix element substitution using the S-box

lookup table. Complexity: 𝑂(𝑛)

2) ShiftRows, simple shifting of rows. Complexity: 𝑂(𝑛)

3) MixColumns, this operation uses Galois

multiplication for the matrix multiplication. The

complexity of Galois matrix multiplication is: 𝑂(𝑚 ∙
𝑛), where m is the cost of Galois multiplication. In

AES, the state has fixed size where m is only 1, so

complexity simplifies to 𝑂(𝑛)

4) AddRoundKey, each byte of the state is XORed with

the round key. Complexity: 𝑂(𝑛)

From the details above, we can conclude the total

complexity of SPN as follows, where Nr is the number of

rounds:

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

𝑂(𝑛 ∙ 𝑁𝑟) (18)

2. Key Expansion

Key expansion is used in deriving a series of round keys

from the initial secret randomly generated key. The process

involves splitting the key into 4-byte words, rotation and

substitution with the S-box, and multiple XOR operations.

The implementation is detailed below.

Figure 14. Implementation of AES key expansion

Source: Author’s documentation

The processes involved in key expansion and their time

complexity is detailed below:

1) Splitting the key, dividing the key requires simple

slicing operations. Complexity: 𝑂(𝑁𝑘), where 𝑁𝑘 =
key_size/32

2) Word rotation and substitution, rotates the bytes of a 4

byte word with cyclic left shift, and substituting the

words using S-box lookup table. The complexity is

𝑂(1) + 𝑂(4)

3) XOR first byte of transformed word with round

constants. Complexity: 𝑂(1)

4) Expanding the key, for each word, compute:

temp = prev_word⨁ 𝑁𝑘𝑡ℎ prev_word

Complexity for this is 𝑂(𝑁𝑘 + 𝑁𝑏 ∙ 𝑁𝑟), where Nr is

the number of rounds and Nb is the number of columns

per round

The total complexity for key expansion is consistent with

the final step:

𝑂(𝑁𝑘 + 𝑁𝑏 ∙ 𝑁𝑟) (19)

The encryption and decryption process in AES is simply the

combination of SPN and key expansion, so for the sake of

brevity, the implementation will not be shown in this paper,

readers may explore the source code attached in the appendix to

see it.

The total complexity of AES is a combination of SPN and key

expansion’s time complexity done on a number of state matrices

(if the data is longer than 16 bytes). For multiple matrices, AES

processes
𝐷

𝑛
 matrices sequentially, where n is the block size (128

bits). For D-bits sized data, the complexity becomes:

𝑂 (
𝐷

𝑛
∙ 𝑛 ∙ 𝑁𝑟) = 𝑂(𝐷 ∙ 𝑁𝑟)

(19)

and so the total time complexity of AES is as follows:

𝑂(𝐷 ∙ 𝑁𝑟 + 𝑁𝑘 + 𝑁𝑏 ∙ 𝑁𝑟) ≈ 𝑂(𝐷 ∙ 𝑁𝑟) (20)

here, 𝐷 ∙ 𝑁𝑟 dominates for large data sizes.

V. TESTS AND RESULTS

For better demonstration, the implementation will be tested

empirically on different key sizes for each algorithms. The tests

will evaluate the runtime of key generation, encryption and

decryption. The encryption is done on the following 2256-bit

text:

“Life is brilliant. Beautiful. It enchants us, to the point of

obsession. Some are true to their purpose, though they are but

shells, flesh and mind. One man lost his own body, but lingered

on, as a head. Others chase the charms of love, however elusive.

What is it that drives you?”

The result of the tests are shown in tables below.

Table I. Test results of RSA implementation (in seconds)

Key size Key Gen. Encryption Decryption Total

128-bit 9.98 × 10−4 9.98 × 10−4 1.18 × 10−2 1.38 × 10−2

192-bit 1.47 × 10−3 1.05 × 10−3 2.22 × 10−2 2.52 × 10−2

256-bit 2.01 × 10−3 9.99 × 10−4 4.15 × 10−2 4.45 × 10−2

Table II. Test results of ECC implementation (in seconds)

Key size Key Gen. Encryption Decryption Total

128-bit 1.02 × 10−3 2.00 × 10−3 1.00 × 10−3 4.02 × 10−3

192-bit 2.00 × 10−3 5.00 × 10−3 2.02 × 10−3 9.02 × 10−3

256-bit 5.00 × 10−3 1.00 × 10−2 5.01 × 10−3 2.00 × 10−2

Table III. Test results of AES implementation (in seconds)

Key size Encryption Decryption Total

128-bit 5.01 × 10−4 9.00 × 10−4 1.40 × 10−3

192-bit 6.00 × 10−4 1.20 × 10−4 1.80 × 10−3

256-bit 8.00 × 10−4 1.40 × 10−4 2.20 × 10−3

The runtime data of implementation aligns with the

theoretical complexities calculated previously. AES performs

the fastest encryption and decryption, and require no key

generation. Its lightweight symmetric operation causes AES to

be very efficient that even larger key sizes only result in slight

increases in runtime. This aligns with the complexity as

calculated in (20).

For ECC, the tests results indicate that it is more

computationally expensive compared to AES, but still edging

RSA’s speed. This aligns with the calculated complexity as

shown in (17). Meanwhile RSA has the highest complexity as

derived In (15), resulting in the slowest total runtime, as well as

exhibiting significant growth as the key size increases.

Overall, from the results of implementation testing it is found

that among the three cryptographic algorithms, AES runs the

fastest across all key sizes tested, followed by ECC, and lastly

RSA.

VI. CONCLUSION

Results of both theoretical complexity analysis and empirical

runtime tests points out the efficiency of each cryptographic

algorithms being tested, which is RSA, ECC, and AES. From

complexity analysis of the implementation, AES was calculated

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

to have a complexity of 𝑂(𝐷 ∙ 𝑁𝑟) where D is the size of data

being encrypted or decrypted in bits, and Nr is the number of

rounds for the corresponding key sizes. Empirical testing

supports this, with total runtime being significantly faster than

ECC and RSA, especially for larger key sizes. ECC was found

to have a complexity of 𝑂(𝑛2log2𝑛) where n is the key size,

making it slower than AES but faster than RSA as can also be

seen from test results. RSA has the highest complexity of

𝑂(𝑛3 log 𝑛 + 𝑚 ∙ 𝑛2 log 𝑛), where n is the key size and m is the

data length, making it the slowest algorithm between the three.

These results mirrors the efficiencies of each algorithm, but it

does not reflects their effectiveness. AES is significantly faster

than the other algorithms, making it the best choice for

encryption of large data. However this does not mean that AES

is more secure than ECC or RSA. ECC and RSA, which are

asymmetric cryptographic algorithms, offer strong security for

key exchange and authentication. Each algorithm is secure when

implemented correctly, but their use depends on specific

requirements of the system. While this paper focuses on

analyzing the efficiency of these algorithms, further evaluation

of their security is required to determine the best cryptographic

algorithm to use in a certain cryptosystem.

VII. APPENDIX

a. Github repository for this project:

https://github.com/grwna/cryptosystem-complexity-

analysis

VIII. ACKNOWLEDGMENT

The author would like to thank God for His endless blessings

and guidance, as without it, this paper would not have been

written succesfully. The deepest thanks also extended to my

lecturer for Discrete Mathematics, Dr. Ir. Rinaldi Munir, M.T.

for his dedication to guide students with patience and expertise.

The author would also like to thank famuly and friends for

their constant and unwavering support and encouragement,

which have been very important throughout the writing of this

paper, and this academic journey.

REFERENCES

[1] R. Munir, Kompleksitas Algoritma Bagian 1, 2024. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-

Kompleksitas-Algoritma-Bagian1-2024.pdf. [Accessed: Jan. 1, 2025].

[2] GeeksforGeeks, "RSA Algorithm in Cryptography," [Online]. Available:
https://www.geeksforgeeks.org/rsa-algorithm-cryptography/. [Accessed:

Jan. 4, 2025].

[3] Cloudflare, "A Relatively Easy to Understand Primer on Elliptic Curve
Cryptography," [Online]. Available: https://blog.cloudflare.com/a-

relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/.

[Accessed: Jan. 4, 2025].
[4] GeeksforGeeks, "Blockchain and Elliptic Curve Cryptography (ECC),"

[Online]. Available: https://www.geeksforgeeks.org/blockchain-elliptic-

curve-cryptography/. [Accessed: Jan. 4, 2025].
[5] GeeksforGeeks, "Advanced Encryption Standard (AES)," [Online].

Available: https://www.geeksforgeeks.org/advanced-encryption-

standard-aes/. [Accessed: Jan. 4, 2025].
[6] Baeldung, "Understanding Cryptographic Algorithm Complexity,"

[Online]. Available: https://www.baeldung.com/cs/cryptographic-
algorithm-complexity. [Accessed: Jan. 4, 2025].

[7] S. I. Serengil, "Elliptic Curve Discrete Logarithm Problem (ECDLP):

Hardness of ECC," YouTube. [Online]. Available:

https://www.youtube.com/watch?v=iKAotDNz5o8. [Accessed: Jan. 5,
2025].

[8] Substitution-Permutation Networks Article:

Naukri.com, "Substitution-Permutation Networks (SPN) in
Cryptography," [Online]. Available:

https://www.naukri.com/code360/library/substitution-permutation-

networksspn-in-cryptography. [Accessed: Jan. 5, 2025].
[9] R. Munir, "Algoritma RSA," Informatika STEI ITB, 2023-2024. [Online].

Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-
2024/18-Algoritma-RSA-2024.pdf. [Accessed: Jan. 8, 2025].

[10] R. Munir, "Beberapa Block Cipher Bagian 2," Informatika STEI ITB,

2023-2024. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-

2024/15-Beberapa-block-cipher-bagian2-2024.pdf. [Accessed: Jan. 8,

2025].

STATEMENT

I hereby declare that this paper is an original work, written

entirely on my own, and does not involve adaptation, translation,

or plagiarism of any other individual's work.

Bandung, 8 January 2024

M. Rayhan Farrukh, 13523035

https://github.com/grwna/cryptosystem-complexity-analysis
https://github.com/grwna/cryptosystem-complexity-analysis
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://www.geeksforgeeks.org/rsa-algorithm-cryptography/
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://www.geeksforgeeks.org/blockchain-elliptic-curve-cryptography/
https://www.geeksforgeeks.org/blockchain-elliptic-curve-cryptography/
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/
https://www.baeldung.com/cs/cryptographic-algorithm-complexity
https://www.baeldung.com/cs/cryptographic-algorithm-complexity
https://www.youtube.com/watch?v=iKAotDNz5o8
https://www.naukri.com/code360/library/substitution-permutation-networksspn-in-cryptography
https://www.naukri.com/code360/library/substitution-permutation-networksspn-in-cryptography
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/18-Algoritma-RSA-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/18-Algoritma-RSA-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/15-Beberapa-block-cipher-bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2023-2024/15-Beberapa-block-cipher-bagian2-2024.pdf

