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Abstract— In the digital age, where nearly every interaction is 

conducted online, ensuring security of data transmitted through 

the internet is important. Cryptography serves as a critical tool for 

such tasks However, while security is essential, efficiency is equally 

important, to ensure scalability and usability of cryptographic 

algorithms. This paper evaluates the efficiency of three widely-used 

cryptographic algorithms: RSA, ECC, and AES, through both 

theoretical complexity analysis and empirical runtime testing. The 

results demonstrate that AES is the fastest for encryption and 

decryption, ECC provides a balance between efficiency and 

security, and RSA is the slowest but remains valuable for secure 

key exchange. These findings emphasize the importance of 

balancing performance and security when selecting cryptographic 

algorithms for specific applications. 
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I.   INTRODUCTION 

In the modern age, where close to every interaction is 

digitalized, many information are shared around through 

networks between people who are countries, even continents 

apart. This poses a serious security risk, as a competent hacker 

can intercept these interactions to extract sensitive informations. 

For this reason there needs to be some protocols and systems to 

ensure security of online transactions. One such tool is 

cryptography. 

Cryptograpy plays a critical role in ensuring data security, it 

is used everywhere, spanning various industries and platforms. 

Companies like Google and Amazon use protocols such as TLS 

and SSL to protect data and secure online transactions. 

Moreover, cryptography is implemented for messaging apps like 

Whatsapp, for their end-to-end encryption, and even blockchain 

technologies, like Bitcoin, to ensure privacy and data integrity. 

For this reason, it is imperative to construct robust 

cryptosystems that are immune to cyberattacks. 

However, while security is critical, the efficiency of  such 

cryptosystems is also an important variable to consider. As the 

volume of data grows, the computational cost of cryptographic 

processes must be optimized to ensure usability and scalability, 

making analysis of computational complexity a critical aspect of 

evaluating cryptosystems implementation. 

This paper will focus on the analysis for time complexity of 

three widely used cryptographic algorithms: RSA, ECC, and 

AES. By analyzing their encryption and decryption process, this 

paper’s study aims to provide a deeper understanding of their 

efficiency and suitability for various security applications. 

 

II.  THEORETICAL FOUNDATION 

A. Computational Complexity 

Computational Complexity, or often referred to as 

Algorithmic Complexity, is a branch of theoretical computer 

science that focuses on the calculations of resources to solve a 

problem, such as the time  or space (memory) required to solve 

a problem. It categorizes algorithms based on their growth rates 

as input sizes increase in order to analyze their efficiency and 

aptitude for the problems specified. 

Key concepts in computational complexity include: 

 

1. Growth of T(n) 

The function T(n) represents the precise growth of 

resources required by an algorithm as the input size n 

increases. For example, the T(n) of both comparisons and 

swaps combined for the worst case of  bubble sort is as 

such: 

 

𝑇(𝑛) = 𝑛(𝑛 − 1) = 𝑛2 − 𝑛  (1) 

 

For time complexity, T(n) is used to quantify the number 

of basic operations performed in the algorithm, whereas 

for space complexity, it quantifies the amount of memory 

used by the algorithm. 

2. Asymptotic Notations 

Asymptotic notations represents the behaviour in 

complexity of algorithms as the input size n grows very 

large. They drop the specificity of the T(n), focusing on 

the dominant growing factor by taking the highest order 

terms and removing constanst and lower order terms. For 

example, the asymptotic notation for the worst case of 

bubble sort algorithm is O(n2). 

Asymptotic notations are divided into three: 

a. Big-O (𝑂(𝑛)): Upper Bound, represents the worst 

case growth rate of an algorithm. 

b. Big-Omega (Ω(𝑛)): Lower Bound, describes the 

best-case growth rate. 
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c. Big-Theta (𝜃(𝑛)): Tight Bound, used when Big-O = 

Big-Omega, providing an exact (tight-bound) 

growth rate for the algorithm 

Asymptotic notations are used in place of T(n) to focus 

only on the scalability of the algorithm, ignoring 

implementation-specific details. 

In cryptography, computational complexity is critical for 

identifying trade-offs between security and efficiency, by 

analyzing the resources that a specific cryptographic algorithm 

requires as opposed to their strength. Computational complexity 

is also important in calculating a cryptographic algorithm’s 

resistance to brute-force attacks or cryptanalytic methods. 

 

B. Cryptography and Cryptosystems 

Cryptography is the practice of hiding or obscuring 

information or data in order to secure it from being read by 

unauthorized  parties. The process of obscuring information into 

unreadable form is called encryption, whereas the process for 

retrieving information back from the encrypted form is called 

decryption. An example of a basic cryptographic technique is 

shifting letters by a certain amount to deform the text (e.g. 

Caesar Cipher). More advanced techniques rely on 

mathematical foundations to ensure security. For instance, RSA 

(Rivest-Shamir-Adleman) uses modular arithmetic and prime 

factorization, and ECC (Elliptic Curve Cryptography) leverages 

properties of elliptic curves to secure informations. 

 

 
Figure 1. Example of Caesar Cipher with the text “Hello 

World” shifted by one letter 

Source: https://www.researchgate.net/profile/Plaintext-and-

the-Corresponding-Ciphertext-using-Caesar-Cipher-with-Key-

1.jpg 

 

In practice, cryptography requires a cryptosystem to ensure its 

effectiveness in securing data. A cryptosystem is a framework 

that combines cryptographic algorithms and protocols required 

to implement a secure data encryption and decryption. It 

tipically consists of the following components: 

 

1. Key Generation, produces the key used in encryption and 

decryption 

2. Encryption, converts plaintext into a ciphertext using a 

key 

3. Decryption, converts ciphertext back into the plaintext 

Cryptosystems are classified into two main types based on 

how encryption and decryption keys are used: symmetric and 

asymmetric. 

 

1. Symmetric  

Symmetric cryptosystems uses a single key for both 

encryption and decryption, making them efficient. 

However, the key has to be shared between the intended 

parties which requires a secure method for exchanging, 

this can be a challenge in large networks. 

2. Asymmetric  

Asymmetric cryptosystems use different keys for the 

encryption and decryption. The key for encryption is 

called the public key, as it is not required to keep this key 

a secret, while the key for decryption is called the private 

key. 

 

 
Figure 2. Illustration of a cryptosystem 

Source: https://cdn.educba.com/academy/wp-

content/uploads/2019/08/What-is-Cryptosystems-1.jpg 

 

C. Rivest-Shamir-Adleman (RSA) 

RSA is an asymmetric cryptosytem inroduced in 1977 by Ron 

Rivest, Adi Shamir and Len Adleman. RSA is the most widely 

used public-key cryptosystem by virtue of its simplicity and 

reliability to provide both data encryption and digital signatures. 

RSA relies on modular arithmetic and number theory. It is based 

on the computational difficulty of factoring a product of two 

large primes p and q, which provides security for its encryption 

method. The process in RSA include: 

 

1. Key Generation 

Generating the key starts with  selecting two large 

prime numbers p and q, which will be kept private. These 

primes are multiplied to compute the modulus n: 

 

𝑛 = 𝑝 × 𝑞  (2) 

 

where n is a part of the public-key, which means it does 

not have to be kept secret. After calculating n, the 

totient ϕ(n) is then calculated as: 

 

𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1) (3) 

 

Next, a public exponent e is chosen such that 1 < 𝑒 <

𝜙(𝑛) and gcd(𝑒, 𝜙(𝑛)) = 1, to ensure that e is coprime 

with the totient. Finally the private-key, or private 

exponent d is computed as the modular multiplicative 

inverse of e modulo ϕ(n), as such: 

 

𝑑 = 𝑒−1 mod 𝜙(𝑛) (4) 
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This private-key d is kept secret, and will be used for 

the decryption process. 

2. Encryption 

To encrypt a plaintext P, it must first be converted 

into numerical form that satisfies 0 ≤ 𝑃 ≤ 𝑛. This is 

done by using an encoding scheme, such as ASCII or 

UTF-8. Once converted into numbers, the sender uses 

the public key to compute the ciphertext C: 

 

𝐶 = 𝑀𝑒  mod 𝑛 (5) 

 

Notice that in the equation, no private keys are used, so 

anyone can encrypt a message to result in the same 

ciphertext as the original P. This means this process can 

be brute-forced, but it will be ridiculously expensive. 

3. Decryption 

To obtain the plaintext P from the received C, the 

recipient will use the private key d along with public 

key n as such: 

 

𝑃 = 𝐶𝑑 mod 𝑛 (6) 

 

The properties of modular arithmetic ensure that it is 

infeasible for anyone without d (and thus without 

knowledge of p and q) to decrypt the ciphertext. 

 

D. Elliptic Curves Cryptography (ECC) 

Elliptic Curves Cryptography is a modern public key 

cryptosystem that leverages the mathematical properties of 

elliptic curves, defined over finite fields. These properties 

provides efficient operations, smaller key sizes, and strong 

security based on the computational infeasibility of the Elliptic 

Curve Discrete Logarithm Problem (ECDLP)[7]. 

ECC is based on the equation of an elliptic curve, typically 

written as: 

 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑝 (7) 

 

where a and b are constants, an p is a prime number defining the 

finite field. For the curve to be usable in ECC, it needs to be non-

singular so that group law applies to it. A curve is non-singular 

if it satisfies the folowing equation: 

 

4𝑎3 + 27𝑏2 ≠ 0 mod 𝑝 (8) 

  

As mentioned previously, the security of ECC comes from 

ECDLP, which is computationally difficult to solve. This 

problem involves finding k such that: 

 

𝑄 = 𝑘𝑃 (9) 

 

where Q and P are points on the curve, and k is a scalar 

multiplier. 

 

 

 
Figure 3. An elliptic curve, typically used for ECC 

Source: https://cf-

assets.www.cloudflare.com/zkvhlag9/image00.png 

 

The cryptographic process in ECC involves: 

 

1. Key Generation 

Key generation in ECC is done by selecting a base 

point G called the generator, and a randomly chosen 

private key d, such that 1 ≤ 𝑑 < 𝑛, where n is the order 

of the curve. The public key of ECC is calculated 

according to (9), with the generator as P and the private 

key as k, and the resulting public key Q is a point along 

the curve. 

2. Encryption 

To encrypt a message, the sender first converts the 

plaintext into a point P on the curve. The ciphertext is 

divided into two points, obtained using the following 

equations: 

 

𝐶1 = 𝑘𝐺,  𝐶2 = 𝑀 + 𝑘𝑄 

 

(10) 

Where k is a random integer chosen for the encryption 

process. The value of k will not be needed in the 

decryption process, although ensuring that k is truly 

random will make the ciphertext more secure. 

3. Decryption 

In order to decryp the ciphertext, the recipient uses 

their private key d to get the plaintext M, according to 

(10) with the following process. 

Since 𝑄 = 𝑑𝐺, and 𝐶1 = 𝑘𝐺, then we can write: 

 

𝑘𝑄 = 𝑘𝑑𝐺 = 𝑑(𝑘𝐺) 

𝑘𝑄 = 𝑑𝐶1 

 

after acquiring 𝑘𝑄 we can then subtract it from C2 to 

obtain the plaintext M: 

𝐶2 = 𝑀 + 𝑘𝑄 

𝑀 = 𝐶2 − 𝑘𝑄 

           𝑀 =  𝐶2 − 𝑑𝐶1 (11) 

 

The most basic application of ECC is the Elliptic Curve 

Diffie-Helman (ECDH). It is a protocol for establishing a shared 

secret over an insecure channel. Each party generates a private 

key, then derive the public key using scalar multiplication on the 

elliptic curve. The shared secret will then be derived after the 

public keys are exchanged. This secret is used in obtaining the 

encryption key. 

 

https://cf-assets.www.cloudflare.com/zkvhlag99gkb/7C9LODC0OpfZlr9E8kqrSP/4248aa3bd2bf09e9f2c5eb7073c8ccfe/image00.png
https://cf-assets.www.cloudflare.com/zkvhlag99gkb/7C9LODC0OpfZlr9E8kqrSP/4248aa3bd2bf09e9f2c5eb7073c8ccfe/image00.png
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E. Advanced Encryption Standard (AES) 

The Advanced Encryption Standard (AES), also known as 

Rijndael, is a symmetric cryptoraphic algorithm adopted as a 

federal standard by the U.S. National Institute of Standards and 

Technology (NIST) in 2001 due to its efficiency and security. 

AES operates on data blocks of fixed size (128 bits) and 

supports key sizes of 128, 192, and 256 bits. AES uses 4x4 

matrices of bytes, called the state, as representation for the data 

blocks. If the data block is larger than 128 bit, the data will be 

separated into different 4x4 matrices, where each cells of these 

matrices contains 1 byte of data. AES performs a Substitution-

Permutation Network (SPN)[8] to transform plaintext into 

ciphertext through a series of rounds. The number of rounds 

depent on the size of the key: 

• 10 rounds for 128-bit keys 

• 12 rounds for 192-bit keys 

• 14 rounds for 256-bit keys 

Each round consists of the following processes: 

 

1. SubBytes 

Each byte in the block is substituted using a fixed 16x16 

substitution lookup table containing non-linear 

transformation of each possible byte value. This ensures 

that non-linearity, creating resistance to linear and 

differential cryptanalysis 

2. ShiftRows 

In this step, each row is shifted left by its row index 

minus one. This operation creates diffusion by 

rearranging the data within the matrix. 

3. MixColumns 

MixColumns aplies a linear transformation to each 

column of the state matrix using matrix multiplication 

over a finite field (256 bits). Each column is multiplied 

by a fixed matrix: 

 

 
Figure 4. Matrix used for MixColumns multiplication 

Source: https://www.reddit.com/media?uFhow-exactly-

does-mix-columns-work-in-aes-png 

 

The result is a new column with the input bytes mixed, 

creating stronger interdependence. This step is not 

included in the final round of enncryption to simplify the 

decryption process 

4. AddRoundKey 

In this step, the state matrix is combined with a round key 

using XOR. Each byte of the state is XORed with the 

corresponding byte of the round key. The original key 

used will be the initial key XORed directly with the 

plaintext. This step is repeated in every round so that 

every round has their own unique key for the encryption. 

The process of generating unique key for each round is 

called key expansion. 

The above rounds processes are repeated according to the 

encryption key size, to transform plaintext into cipher text in the 

encryption process. For decryption, the steps are reversed using 

their respective inverse functions to restore the original 

plaintext. 

 

III.   METHODOLOGY 

The cryptographic algorithms analyzed in this paper are RSA, 

ECC and AES. The analysis is conducted through both 

theoretical calculations and empirical testing to evaluate the 

efficiency of each algorithms. 

The theoretical calculations will focus on the core 

mathematical operations underlying the algorithm. For RSA, the 

focus will be on the time complexity of modular exponentiation, 

as well as the computational difficulty of prime factorization. 

For ECC, the analysis centers on scalar multiplication over 

elliptic curves and its reliance on the difficulty of ECDLP. As 

for AES, each key expansion process and the Substitution-

Permutation Network’s complexity are evaluated to assess 

performance of the algorithm. Overall, the focus will be on the 

key generation fo these algorithms as it is the most impactful 

factor of performance. 

Empirical testing is  done by implementing these algorithms 

in Python using the Pycryptodome, tinyec, and sympy libraries. 

Python is chosen for its simplicity of implementing these 

cryptographic algorithms, although with a trade-off in execution 

speed. The tests will measure encryption and decryption times 

for varying key sizes. Additionally, brute-force resistance is 

simulated on small data and key sizes to estimate the effort 

required to break each algorithm. All tests will be conducted on 

a Lenovo Legion 5i Pro Gen 7, equipped with an Intel i7 12700H 

processor and Nvidia GeForce RTX  3060 GPU. 

 

IV.   IMPLEMENTATION AND COMPLEXITY ANALYSIS 

A. Generating Large Numbers 

The first step in each algorithms used is to generate large 

numbers that serves as the basis for the key generation. The size 

of these numbers will correspond to the size of the key. In this 

paper, the key sizes used is 128, 192, and 256 bit. The numbers 

generated will not have the same characteristics for every 

algorithms, as they each have different requirements, as RSA 

and ECC require prime numbers. Consequently, RSA and ECC 

relies on primality testing to ensure the numbers generated are 

prime. A common approach for this is to use the Miller-Rabin 

primality test. The Miller-Rabin primality test is a probabilistic 

algorithm used to determine whether a number is likely a prime. 

  

 
Figure 5. Implementation of modular exponentiation 

Source: Author’s documentation 

https://www.reddit.com/media?url=https%3A%2F%2Fpreview.redd.it%2Fhow-exactly-does-mix-columns-work-in-aes-v0-gyzsg4fh725b1.png%3Fwidth%3D1886%26format%3Dpng%26auto%3Dwebp%26s%3D21b048928ea7cd1f7d9a41f907597d963bf73fbb
https://www.reddit.com/media?url=https%3A%2F%2Fpreview.redd.it%2Fhow-exactly-does-mix-columns-work-in-aes-v0-gyzsg4fh725b1.png%3Fwidth%3D1886%26format%3Dpng%26auto%3Dwebp%26s%3D21b048928ea7cd1f7d9a41f907597d963bf73fbb
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Figure 6. Implementation of Miller-Rabin primality test 

Source: Author’s documentation 

 

The implementation for Miller-Rabin test is as follows. 

Where n is the candidate number being tested: 

1) Decompose 𝑛 − 1 into 𝑑 ∗ 2𝑟 , where d is odd. 

2) Randomly select a base a in the range [2, 𝑛 − 2]. 
3) Compute 𝑥 = 𝑎𝑑  mod 𝑛. If 𝑥 = 1 or 𝑥 = 𝑛 − 1, the 

candidate passes this round. 

4) If not, repeatedly square x (up to 𝑟 − 1 times) and check 

if 𝑥 = 𝑛 − 1. If it still does not satisfy, then the candidate 

is composite. 

This implementation leverages modular exponentiation (step 3) 

for efficient computation. 

The complexity for this algorithm is dominated by modular 

exponentiation, computed using repeated squaring. A single 

modular exponentiation has complexity: 

 

𝑂(𝑘2 log 𝑘) (12) 

 

where k is the bit length of n.  

The Miller-Rabin primality test is only required to obtain 

primes for RSA and ECC. As for AES, the process is much more 

straightforward, as it does not require prime numbers. Instead, 

AES simply requires a random number within the desired bit 

sizes. This eliminates primality testing, resulting in a time 

complexity: 

 

𝑂(𝑘) 

 

B. RSA 

In general, RSA can be divided into three important 

processes, key generation, encryption, and decryption. Among 

the three, RSA’s complexity is most dominantly influenced by 

the key generation, where as encryption and decryption have 

roughly the same complexity, with both of them relying on 

modular exponentiation. Due to this fact, the efficiency of RSA 

mostly depends on the bit size of the keys, not the data size. The 

complexity. The implementation and complexity analysis for 

RSA is like so: 

 

1. Key Generation 

 

 
Figure 7. Implementation of RSA key generation 

Source: Author’s documentation 

 

The key generation process starts with generating two 

large prime numbers, each of the numbers will be 
𝑘

2
 bits in 

size where k is the size of the key. The process of randomly 

generating these numbers has the complexity of 𝑂(𝑘). Each 

generated number is a candidate for primality testing, which 

according to (12) have the complexity of 𝑂(𝑘2 log 𝑘). If the 

numbers generated is not a prime number then repeat 

iteration of the primality test is required on multiple 

candidates, this results in the complexity: 

 

𝑂(𝑘 ∙ 𝑘2 log 𝑘) = 𝑂(𝑘3 log 𝑘) 

 

Once p and q are generated, we calculate the public key n 

and its totient 𝜙(𝑛), both of these only involve arithmetic 

multiplication which has a complexity of 𝑂(𝑘 log 𝑘). 

Afterwards we obtain the private key d using modular 

inverse of e mod 𝜙(𝑛). The implementation uses Extended 

Eucledian Algorithm for this which require 𝑂(𝑘) division 

steps, with each step performing either a division or 

multiplication of k-bit numbers. The complexity of modular 

inverse calculation is 𝑂(𝑘2), assuming no logarithmic 

overhead. Overall, the complexity of key generation is: 

 

𝑂(𝑘3 + 𝑘2 + 𝑘3 log 𝑘) = 𝑂(𝑘3 log 𝑘) (13) 

 

2. Encryption and Decryption 

 
Figure 8. Implementation of RSA Encryption & Decryption 

Source: Author’s documentation 

 

Both encryption and decryption rely on modular 

exponentiation applied to each character of the 

plaintext/ciphertext. Modular exponentiation computes 

𝑥𝑦mod 𝑛, where x is the character’s numeric value, y is the 

key, n is the totient of the public key. The complexity of 

modular exponentiation is (12), and for modular 
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exponentiation on a text of length m the complexity 

becomes: 

 

𝑂(𝑚 ∙ 𝑘2 log 𝑘) (14) 

 

Encryption typically uses a small, fixed public exponent (e 

= 65537), where as decyption uses a large private exponent 

with k bits size. This causes a difference in performance, but 

alas the asymptotic complexity remains the same. 

 

In conclusion, the overall complexity of RSA is a 

combination of key generation and encryption-decryption as 

such: 

 

𝑂(𝑛3 log 𝑛 + 𝑚 ∙ 𝑛2 log 𝑛) (15) 

 

here, key generation will dominate for small messages (𝑚 ≪ 𝑛), 

while encryption-decryption dominates for large messages. This 

reflects the trade-offs between key size n and message length m. 

 

C. ECC 

Much like RSA, ECC consists of three processes, key 

generation, encryption, and decryption. For these processes, the 

computational complexity is most significantly affected by 

scalar multiplication, which is the foundation of all ECC 

operations. Scalar multiplication is utilizes in all three processes, 

which makes the complexity distributed relatively evenly for all 

three process. Implementation and complexity analysis for ECC 

is as follows: 

 

1. Operations 

Elliptic curves operations will be done using an elliptic 

curve object, as shown below in Fig. 9: 

 

 
Figure 9. Implementation of Elliptic Curve object 

Source: Author’s documentation 

 

The elliptic curve used is NIST P-128, P-192, and P-256, 

the values of the elements of these curves can is not shown 

for the sake of brevity (refer to the appendix for the source 

code). This curve is used as it is widely chosen for its 

strong 128-bit security, excellent performance and it is 

standardized in cryptographic protocols. 

The operations for ECC include point addition and point 

doubling, which will be used in the scalar multiplication 

process. For the sake of brevity, only scalar multiplication’s 

complexity will be detailed here. Fig 10. Shows the code 

for scalar multiplication: 

 

 
Figure 10. Implementation of scalar multiplication 

Source: Author’s documentation 

 

Scalar multiplication’s complexity is dominated by point 

addition and point doubling. Both of these operations have 

roughly the same complexity as they are mostly doing the 

same operations with slight differences to account addition 

of a point with itself in doubling. The point addition 

process follows these steps: 

1) Compute the slope (m), which uses subtractions, 

modular inversion and modular multiplication.  

2) Compute the new x coordinate, this uses 

subtractions and modular squaring 

3) Compute the new y coordinate, this step uses 

subtractions and modular multiplication. 

The steps are slightly different for point doubling, but the 

complexity is more or less the same. In total, these steps 

combine has the total complexity of: 

 

𝑂(𝑘2 log 𝑘) 

 

 

For scalar multiplcation, it uses the double-and-add 

algorithm, which involves iterating the bits of k through 

log2 𝑘 iterations, and since scalar multiplication is 

dominated by point addition and doubling, the total 

complexity becomes: 

 

𝑂(log2𝑘 ∙ 𝑘2log2𝑘) = 𝑂(𝑘2log2𝑘) (16) 

 

2. Key generation 

The first step in key generation is to choose a point G on 

the curve as a generator point, which in this case G is the 

NIST standard point, different for each key sizes. The value 

of these points can be seen within the source code (refer to 

the appendix). 

 

 
Figure 11. Implementation of key generation for ECC 

Source: Author’s documentation 

 



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

There are two keys generated, the private key, and the 

public key. The private key is chosen from the range [1, 𝑝 −
1], where p is the prime modulus of the curve. Usually 

calculating p is done randomly generating it, and have it go 

through primality testing, but since we are using the 

predefined NIST standard curve, there is no need to generate 

p. This makes the complexity for private key generation 

significantly faster with the complexity of  𝑂(1). 

This private key is then used to calculate the public key by 

multiplying it with the generator point G. This step uses 

scalar multiplication which has complexity of (16). So 

overall, the computational complexity of key generation of 

ECC is the same as that of scalar multiplication if the prime 

p is predetermined. Otherwise, ECC key generation is 

dominated by Miller-Rabin primality test which has the 

complexity of (13).  

3. Encryption and Decryption 

Much like RSA, the encryption and decryption in ECC 

have similar complexities with slight differences.  

 

 
Figure 12. Implementation of ECC encryption and 

decryption 

Source: Author’s documentation 

 

The steps for encryption are as follows: 

1) Pick a random scalar k as ephemeral key 

2) Compute 𝐶1 = 𝑘𝐺 using scalar multiplication 

3) Compute kQ using scalar multiplication 

4) Obtain C2 as the ciphertext by adding the x-coordinate 

of kQ, this is done to every character in the plaintext 

The complexity of this process is equal to the complexity 

of scalar multiplication (16). As for decryption, we only need 

to compute kQ using private key d and part of the ciphertext 

C1, then we obtain the plaintext using (11). Encryption and 

decryption has similar complexity, although encryption 

takes slightly more time because scalar multiplication is 

done twice, which makes it slightly more computationally 

expensive than decryption. 

 

Overall, the total complexity of ECC is dominated by scalar 

multiplication, this reflects the process as each step in ECC 

require scalar multiplication. The complexity of ECC is then: 

 

𝑂(𝑛2log2𝑛) (17) 

 

D. AES 

AES works differently than the two previous algorithms 

discussed. Unlike RSA and ECC, AES is a symmetric key 

algorithm designed for high speed data encryption. The core 

operations underlying AES is the Substitution-Permutation 

Network (SPN), which contributes the most in complexity due 

to its repetition during rounds calculation in both encryption and 

decryption process. Also unlike RSA and ECC, AES’s key 

generation, called key expansion, is done on every round of 

AES. This process, along with other operations, is implemented 

as detailed below.  

 

1. Substitution-Permutation Network 

The heart of AES, SPN, along with its inverses, takes up 

most of the operations in data encryption and decryption, 

which means time complexity of SPN determines time 

complexity of AES. 

 

 
Figure 13. Implementation of SPN 

Source: Author’s documentation 

 

Fig. 13 shows the implementation of normal SPN used in 

encryption, it constitutes four operations, SubBytes, 

ShiftRows, MixColumns, and RoundKey addition. For 

decryption, the SPN used is the inverses of these operation, 

which has the same time complexity, meaning encryption 

and decryption has the same time complexity. For the sake 

of brevity, the implementation for the inverses will not be 

shown here, readers’ may refer to the appendix for further 

exploration. The complexity for each of these operations is 

described below, where n is the size of the state matrix 

1) SubBytes, matrix element substitution using the S-box 

lookup table. Complexity: 𝑂(𝑛)  

2) ShiftRows, simple shifting of rows. Complexity: 𝑂(𝑛) 

3) MixColumns, this operation uses Galois 

multiplication for the matrix multiplication. The 

complexity of Galois matrix multiplication is: 𝑂(𝑚 ∙
𝑛), where m is the cost of Galois multiplication. In 

AES, the state has fixed size where m is only 1, so 

complexity simplifies to 𝑂(𝑛) 

4) AddRoundKey, each byte of the state is XORed with 

the round key. Complexity: 𝑂(𝑛) 

From the details above, we can conclude the total 

complexity of SPN as follows, where Nr is the number of 

rounds: 

 



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

𝑂(𝑛 ∙ 𝑁𝑟) (18) 

 

2. Key Expansion 

Key expansion is used in deriving a series of round keys 

from the initial secret randomly generated key. The process 

involves splitting the key into 4-byte words, rotation and 

substitution with the S-box, and multiple XOR operations. 

The implementation is detailed below. 

 

 
Figure 14. Implementation of AES key expansion 

Source: Author’s documentation 

 

The processes involved in key expansion and their time 

complexity is detailed below: 

1) Splitting the key, dividing the key requires simple 

slicing operations. Complexity: 𝑂(𝑁𝑘), where 𝑁𝑘 =
key_size/32 

2) Word rotation and substitution, rotates the bytes of a 4 

byte word with cyclic left shift, and substituting the 

words using S-box lookup table. The complexity is 

𝑂(1) + 𝑂(4) 

3) XOR first byte of transformed word with round 

constants. Complexity: 𝑂(1) 

4) Expanding the key, for each word, compute: 

temp = prev_word⨁ 𝑁𝑘𝑡ℎ prev_word 

Complexity for this is 𝑂(𝑁𝑘 + 𝑁𝑏 ∙ 𝑁𝑟), where Nr is 

the number of rounds and Nb is the number of columns 

per round 

The total complexity for key expansion is consistent with 

the final step: 

 

𝑂(𝑁𝑘 + 𝑁𝑏 ∙ 𝑁𝑟) (19) 

 

The encryption and decryption process in AES is simply the 

combination of SPN and key expansion, so for the sake of 

brevity,  the implementation will not be shown in this paper, 

readers may explore the source code attached in the appendix to 

see it. 

The total complexity of AES is a combination of SPN and key 

expansion’s time complexity done on a number of state matrices 

(if the data is longer than 16 bytes). For multiple matrices, AES 

processes 
𝐷

𝑛
 matrices sequentially, where n is the block size (128 

bits). For D-bits sized data, the complexity becomes: 

 

𝑂 ( 
𝐷

𝑛
∙ 𝑛 ∙ 𝑁𝑟) = 𝑂(𝐷 ∙ 𝑁𝑟) 

(19) 

 

and so the total time complexity of AES is as follows: 

 

𝑂(𝐷 ∙ 𝑁𝑟 + 𝑁𝑘 + 𝑁𝑏 ∙ 𝑁𝑟) ≈ 𝑂(𝐷 ∙ 𝑁𝑟) (20) 

 

here, 𝐷 ∙ 𝑁𝑟 dominates for large data sizes. 

 

V.   TESTS AND RESULTS 

For better demonstration, the implementation will be tested 

empirically on different key sizes for each algorithms. The tests 

will evaluate the runtime of key generation, encryption and 

decryption. The encryption is done on the following 2256-bit 

text: 

“Life is brilliant. Beautiful. It enchants us, to the point of 

obsession. Some are true to their purpose, though they are but 

shells, flesh and mind. One man lost his own body, but lingered 

on, as a head. Others chase the charms of love, however elusive. 

What is it that drives you?”  

The result of the tests are shown in tables below. 

 

Table I. Test results of RSA implementation (in seconds) 

Key size Key Gen. Encryption Decryption Total 

128-bit 9.98 × 10−4 9.98 × 10−4 1.18 × 10−2 1.38 × 10−2 

192-bit 1.47 × 10−3 1.05 × 10−3 2.22 × 10−2 2.52 × 10−2 

256-bit 2.01 × 10−3 9.99 × 10−4 4.15 × 10−2 4.45 × 10−2 

 

Table II. Test results of ECC implementation (in seconds) 

Key size Key Gen. Encryption Decryption Total 

128-bit 1.02 × 10−3 2.00 × 10−3 1.00 × 10−3 4.02 × 10−3 

192-bit 2.00 × 10−3 5.00 × 10−3 2.02 × 10−3 9.02 × 10−3 

256-bit 5.00 × 10−3 1.00 × 10−2 5.01 × 10−3 2.00 × 10−2 

 

Table III. Test results of AES implementation (in seconds) 

Key size Encryption Decryption Total 

128-bit 5.01 × 10−4 9.00 × 10−4 1.40 × 10−3 

192-bit 6.00 × 10−4 1.20 × 10−4 1.80 × 10−3 

256-bit 8.00 × 10−4 1.40 × 10−4 2.20 × 10−3 

 

The runtime data of implementation aligns with the 

theoretical complexities calculated previously. AES performs 

the fastest encryption and decryption, and require no key 

generation. Its lightweight symmetric operation causes AES to 

be very efficient that even larger key sizes only result in slight 

increases in runtime. This aligns with the complexity as 

calculated in (20). 

For ECC, the tests results indicate that it is more 

computationally expensive compared to AES, but still edging 

RSA’s speed. This aligns with the calculated complexity as 

shown in (17). Meanwhile RSA has the highest complexity as 

derived In (15), resulting in the slowest total runtime, as well as 

exhibiting significant growth as the key size increases. 

Overall, from the results of implementation testing it is found 

that among the three cryptographic algorithms, AES runs the 

fastest across all key sizes tested, followed by ECC, and lastly 

RSA. 

 

VI.   CONCLUSION 

Results of both theoretical complexity analysis and empirical 

runtime tests points out the efficiency of each cryptographic 

algorithms being tested, which is RSA, ECC, and AES. From 

complexity analysis of the implementation, AES was calculated 
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to have a complexity of 𝑂(𝐷 ∙ 𝑁𝑟) where D is the size of data 

being encrypted or decrypted in bits, and Nr is the number of 

rounds for the corresponding key sizes. Empirical testing 

supports this, with total runtime being significantly faster than 

ECC and RSA, especially for larger key sizes. ECC was found 

to have a complexity of 𝑂(𝑛2log2𝑛) where n is the key size, 

making it slower than AES but faster than RSA as can also be 

seen from test results. RSA has the highest complexity of 

𝑂(𝑛3 log 𝑛 + 𝑚 ∙ 𝑛2 log 𝑛), where n is the key size and m is the 

data length, making it the slowest algorithm between the three. 

These results mirrors the efficiencies of each algorithm, but it 

does not reflects their effectiveness. AES is significantly faster 

than the other algorithms, making it the best choice for 

encryption of large data. However this does not mean that AES 

is more secure than ECC or RSA. ECC and RSA, which are 

asymmetric cryptographic algorithms, offer strong security for 

key exchange and authentication. Each algorithm is secure when 

implemented correctly, but their use depends on specific 

requirements of the system. While this paper focuses on 

analyzing the efficiency of these algorithms, further evaluation 

of their security is required to determine the best cryptographic 

algorithm to use in a certain cryptosystem. 
 

VII.   APPENDIX 

a. Github repository for this project: 

https://github.com/grwna/cryptosystem-complexity-

analysis 
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